Discovery of Visual Semantics by Unsupervised and Self-Supervised Representation Learning
نویسنده
چکیده
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 UNSUPERVISED REPRESENTATION LEARNING . . . . . . . . . . . . . . . . 4 1.
منابع مشابه
Enriching Wikipedia Vandalism Taxonomy via Subclass Discovery
This paper adopts an unsupervised subclass discovery approach to automatically improve the taxonomy of Wikipedia vandalism. Wikipedia vandalism, defined as malicious editing intended to compromise the integrity of the content of articles, exhibits heterogeneous characteristics, making it hard to detect automatically. The categorization of vandalism provides insights on the detection of vandalis...
متن کاملKnowledge Discovery from Mixed Data by Artificial Neural Network with Unsupervised Learning
Knowledge discovery or data mining from massive data is a hot issue in business and academia in recent years. Real-world data are usually of mixed-type, consisting of categorical and numeric attributes. Mining knowledge from massive, mixed data is challenge. To explore unknown data, visualized analysis allows users to gain some initial understanding regarding the data and to prepare for further...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملTransferrable Representations for Visual Recognition
Transferrable Representations for Visual Recognition by Jeffrey Donahue Doctor of Philosophy in Computer Science University of California, Berkeley Professor Trevor Darrell, Chair The rapid progress in visual recognition capabilities over the past several years can be attributed largely to improvements in generic and transferrable feature representations, particularly learned representations ba...
متن کاملAdversarial Feature Learning
The ability of the Generative Adversarial Networks (GANs) framework to learn generative models mapping from simple latent distributions to arbitrarily complex data distributions has been demonstrated empirically, with compelling results showing generators learn to “linearize semantics” in the latent space of such models. Intuitively, such latent spaces may serve as useful feature representation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.05812 شماره
صفحات -
تاریخ انتشار 2017